

Mathematics Department 2nd Semester 2020/2021 MATH 330 – Course Outline

Text Book:

John H. Mathews and Kurtis D. Fink. **Numerical Methods using MATLAB**, **4**th edition. Pearson Education Inc., 2004.

Reference:

Richard L. Burden and J. Douglas Faires. Numerical Analysis, 8th edition. Brooks/Cole, Cengage Learning, 2005.

Course Content:

	Chapter	Section
1	Preliminaries	1.1 + 1.3
2	Solution of Nonlinear Equations $f(x) = 0$	2.1 + 2.2 + 2.3 + 2.4
3	Solution of Linear Systems $AX = B$	3.3 + 3.4 + 3.5 + 3.6 + 3.7
4	Interpolation and Polynomial Approximation	4.1 + 4.2 + 4.3 + 4.4
5	Curve Fitting	5.1 + 5.2 + 5.3
6	Numerical Differentiation	6.1 + 6.2
7	Numerical Integration	7.1 + 7.2 + 7.5
9	Solution of Differential Equations	9.2 + 9.3 + 9.4 + 9.5

Grading Policy:

Quizzes, and Homeworks	10%
Two exams	50%
Final Exam	40%

<u>Course Detailed Contents (with lectures)(approximated)</u>

1	Preli	Preliminaries						
	1.1	Review of Calculus	1 Lecture					
	1.3	Error Analysis	1 Lecture					
2	Solu	Solution of Nonlinear Equations $f(x) = 0$						
	2.1	Iteration for Solving $x = g(x)$	2.5 Lectures					
	2.2	Bracketing Methods for Locating a Root	1.5 Lecture					
	2.3		.5 Lecture					
	2.4	Newton-Raphson and Secant Methods	2.5 Lectures					
3	Solu	Solution of Linear Systems $AX = B$						
	3.3	Upper-Triangular Linear Systems	.5 Lecture					
	3.4	e	1.5 Lectures					
	3.5	6	1 Lecture					
	3.6		.5 Lecture					
	3.7	Iteration for Nonlinear Systems: Jacobi, Seidel and						
		Newton's Methods	1.5 Lectures					
4	Inter	Interpolation and Polynomial Approximation						
	4.2	Introduction to Interpolation	.5 Lecture					
	4.3	Lagrange Approximation	2 Lectures					
	4.4	Newton Polynomials	1.5 Lecture					
5	Curv	Curve Fitting						
	5.1	Least-Squares Line	1 Lecture					
	5.2	Methods of Curve Fitting	1 Lecture					
	5.3	Interpolation by Spline Functions	1 Lecture					
6	Num	Numerical Differentiation						
	6.1	Approximating the Derivative	2 Lectures					
	6.2	Numerical Differentiation Formulas	2 Lectures					
7	Numerical Integration							
	7.1	Introduction to Quadrature	1 Lecture					
	7.2	Composite Trapezoidal and Simpson's Rule	1 Lecture					
	7.5	Gauss-Legendre Integration	1 Lecture					
9	Solu	Solution of Differential Equations (2 lecturs)						
	9.2							
	9.3	Heun's Method						
	<mark>9.4</mark>	Taylor Series Method						
	9.5	Runge-Kutta Methods						

Suggested Exercises:

Section	Page	Exercises
1.1	12	Part (a) of the exercises $1 - 15$
1.3	37	2, 3, 5(b), 8, 9
2.1	50	1, 2, 3, 4, 5, 8, 9
2.2	61	1, 3(a+b), 5, 8, 12
2.3	69	1-6
2.4	85	1, 3, 5, 8, 10, 12, 13, 18, 21, 23
3.3	124	4, 5, 7
3.4	137	1, 5, 11, 14(a), 15
3.5	153	3(a), 6
3.6	165	5,7
3.7	180	2(a+b), 5, 10
4.1	195	1, 3, 4, 12
4.2	205	1, 3
4.3	217	2, 5, 6, 7, 8, 9, 10, 11, 12, 13
4.4	228	5, 7, 9, 11
5.1	259	1(a), 3(a), 4, 8, 10(c)
5.2	275	1(a), 5, 11, 17
5.3	294	1, 3, 4, 5, 15
6.1	334	1, 4, 6, 10, 11
6.2	349	1, 3, 7, 9, 10, 11
7.1	362	1(b), 3, 6, 8, 9
7.2	374	1(a), 2, 4, 5, 6, 8
7.5	406	4, 9, 11
9.2	472	1, 3, 8
9.3	480	1, 3, 7
9.4	487	1, 3
9.5	502	1, 3